INDIAN INSTITUE OF TECHNOLOGY, ROORKEE

DEPARTMENTAL REVIEW TEMPLATE

- 1. Name of Department/Center: Computer Science & Engineering
- 2. Reviewers:
 - i. Prof. Om Vikas (Former Director, IITM Gwalior)
 - ii. Prof. Saroj Kaushik (IIT, Delhi)
 - iii. Dr. B.K. Murthy (Exec. Director, CDAC Noida)
- 3. Date of Review: 13.05.2014

GRID FOR ASSESSMENT

NOTE:

- i. Please grade in the box provided for the following parameters in the range of 1-10 with 10 being the highest.
- ii. Leave 'blank' for 'No Comment'.
- iii. Kindly give your opinion on the strength and weakness of the Department/ Center and your suggestions for future growth.

I. ACADEMICS

I.1	Undergraduate	Score
1.	Curriculum i. Curricular Structure ii. Course Syllabi iii. Flexibility	8 8 7
2.	Formal Academic Load on Students i. Teaching ii. Laboratory/Practical iii. Projects(minor/major)	8 6 8
3.	Evaluation Process i. Continuing Evaluation ii. Mid-term Evaluation iii. End-term Evaluation	9 10 10

311 20

Mars

4.	Academic Ambience	9
5,	Opportunity for Peer-Based Learning	8
6.	Opportunity for Further Learning(Breadth and Depth)	
	i. Elective Courses Specialization	8
	ii. Minor with Major Discipline	9
	iii. Honors Programme in Major Discipline	9
7.	E-Assisted Learning	
	i. Availability of Library Resources and Major Search Engines	10
	(like Scopus, Web of Science)	
	ii. Multi-Media Assisted Teaching	8
8.	In –Curriculum Research/Exploration Opportunity to Students	7
9.	Technical Societies/ Colloquium for Students	
	i. Departmental Society	9
	ii. Student Chapter(s) of Professional Societies	8
10.	Faculty –Student Interaction	6
11.	Faculty Mentoring of Students	6
12.	Faculty Advisor System for Students/Class of Students	6
13.	Self Study Courses for Student	0
14.	Effective Teaching Mechanism for Enhanced Number of Students in	6
	Various Classes	
15.	Effectiveness of Assisted Learning:	8
	Tutorial System for B.Tech Students/ Seminars	

Note-Number of Students is large that is affecting efficiency of Teaching-Learning Process. Lab component in courses may be increased by replacing tutorials.

I.2	Graduate Programmes (Masters)	Score
1.	Curriculum	
	i. Curricular Structure	8
	ii. Course Syllabi	8
	iii. Flexibility	8
2.	Formal Academic Load on Students	
	i. Teaching	8
	ii. Laboratory/Practical	7
	iii. Seminar/Dissertation	8
3.	Evaluation Process	
25	i. Continuing Evaluation	9
	ii. Mid-Term Evaluation	10
	iii. End-Term Evaluation	10
4.	Academic Ambience	8
5.	Opportunity for Peer-Based Learning	8
6.	Opportunity for further Learning(Breadth and Depth) Elective Courses (Specialization Electives)	8
7.	E-Assisted Learning i. Availability of Library Resources and Major Search Engines (like Scopus, Web of Science)	10

Thouse.

Mars 2

	ii. Multi-Media Assisted Teaching	
		8
8.	In -Curriculum Research/Exploration Opportunity to Students	9
9.	Technical Societies/ Colloquium for Students	
	i. Departmental Society	9
	ii. Student Chapter(s) of Professional Societies	8
10.	FacultyStudent Interaction	7
11.	Faculty Mentoring/Supervising of Students	4
12.	Faculty Advisor System for Students/Class of Students	0
13.	Effectiveness of Assisted Learning:	6
	Home Assignments/Seminars/Presentations	

I.3	Doctoral (Ph.D) Programmes		Score
13.	Pre-Ph.DCourses and Evaluation Process		10
2.	Comprehensive Courses Examination		10
3.	Breadth and Depth of Knowledge of Students		8
4.	Seminar/ Presentations and Technical Communication		9
5.	Average No. of Research Students/Faculty	(2)	996
6.	Average No. of Research Papers of Ph.DStudents	4	\ <u></u>
7.	Average Duration to Complete Ph.D(years)	4/Yrs	72

II. RESEARCH

		Score
1,	Research Ambience in the Department	8
2.	Research Awareness among Doctoral Students	8
3.	Competence Level of Doctoral Students for Research	8
4.	Quality of Research	8
5.	Quality of Publications	8
6.	Impact of Publications	8
7.	Relevance of Research to Knowledge Generation	8
8.	Societal Relevance of Research	7
9.	Exposure of Researchers to the International State of Art	8
10.	Student Exposure to Attending Quality Conferences/Symposia	8
11,	Growth in Ph.D Programme (Low)	6
12.	Quality of Research Infrastructure	7
13.	Utilization of Existing Research Infrastructure	9
14.	Department Initiative on Faculty Hiring	10
15.	Breadth and Depth of Research in the Department	8
16.	Research Intensity of Faculty Members	6

Note: Research will be enhanced upon induction of new faculty.

But In S

Mars 3

3

Futuristic Areas For Hiring Faculty Members

VLSI Design, Theoretical computer science, AI & Machine Learning, Robotics

Research Areas for Improvement

Language Technology, Embedded Systems, Semantic Web Technology, High speed network, Parallel Computing.

Comments (not more than 100 words for each given below)

Strength:

- Initiated CSE programme in early stage under ECE Department.
- Tradition & quality education.
- Quality of students is good.
- Exposure to international research activities.

Weakness:

- Low faculty students ratio
- Low industry interaction due to location disadvantage.
- Inadequate research facilities.
- Low level of interdisciplinary research.

Suggestions for improvement:

- Active faculty recruitment drives to increase research output.
- Improve infrastructure with additional office and lab space.
- Encourage innovation- centric teaching and learning process.
- Identify few thrust areas and overlapping areas for interdisciplinary research.
- Emphasis on open sources and multilingual computing keeping in view of creativity enhancement and societal relevance.

III. Departmental Infrastructure

		Score
1.	Adequacy of Class Rooms and Multi-Media Facility	8
2.	Availability of Laboratories	8
3	Availability of Conference/Seminar Room, etc.	8
4.	Availability of Seating Space for Research Students	9
5.	Availability of Internet Services in Research Labs and Class Rooms	10
6.	Departmental Library and E-Resources	10
7	Computing Facilities and Software	9
8.	Adequacy of Offices and Furnishing for Faculty	10
9.	Faculty- Student Ratio	1:39
10.	Support Staff (Technical/Administrative) Adequacy	8

Distre.

Mars 2

4

Comments (not more than 100 words for each given below)

Strength:

- Relatively adequate infrastructure.
- Availability of space for researcher.
- Good library and e- learning resources.

Weakness:

• Very low faculty- Student ratio (1:39) against 1:15 for UG and 1:10 for PG.

Suggestions for improvement:

- Need for more space for additional labs.
- Need for more space for Additional Faculty and research students.
- Introduction of "Earn while you Learn" scheme.
- Introduction of projects lab for B. Tech students.
- Introduction of Computing Tools and Trouble Shootings Hobbes workshop for students,

IV. Admissions of Ph.D Students

		Score
1.	Intake of Ph.D Students	
2.	Admission Process	

Suggestions:

- Talented B. Tech students may be encouraged for research and innovation and entry into Ph.D Programmes.
- M.Tech Programmes may be offered as regular M.Tech and MS by research.

3n tage.

Mars 3

V. Outcomes

		Score
1.	Placements	
	i. Placement of B.Tech/IDD Students	10
	ii. Placement of Masters Student	10
	iii. Placement of Ph.D Students	3
2.	Average No. of Ph.D.s Awarded per Year 3	
3.	Publications per Faculty in ISI Indexed Journals/Year 4/yr	-
4.	Average Citations per Faculty/Year (Last-Three Years) 10 (Web of Science/Scopus)	(e)
5.	Recognitions; Awards(National/International) to Faculty/Students	145
6.	Consultancy and Projects	6
7 a	No. of Ph.D. graduates who took Academics as Career(Based on Data of Last 5 Years)	-

Comments and Suggestions for improvement:

- Need to create wider awareness among faculty about outcome based assessment.
- Need to specify vision, mission, programme educational objectives, programme outcomes and course outcomes as per NBA guidelines in view Washington Accord.
- Need to encourage societal out-reach programs.
- Students learning outcomes need to be well documented.
- Ph.D. programme may have compulsory courses on Engineering Research Methodology and Teaching Methods in addition to research specific courses.
- M.Tech and Ph.D students may also be encouraged to mentor B.Tech students for their projects.

Dr. B K Murthy)

Exec.-Director, CDAC Noida

(Dr. SarojKaushik)

Professor, IIT Delhi

(Dr. Om Vikas)

Former-Director, IIITM Gwalior